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Abstract

Background: Early-grade teachers in low-resource contexts often lack practical tools to 
conduct frequent formative assessment and translate results into actionable instruction. 
Mobile assessment platforms may address this gap, yet evidence on real-world adoption, 
usability for young learners, and scalable learning analytics remains limited, particularly for 
systems integrating offline-first engineering with differentiated-instruction design.

Objectives: This study evaluates an offline-first, mobile Foundational Literacy Platform 
(FLP) for early literacy in Kenyan primary schools, examining three research questions: (1) 
How do learners engage with mobile assessments, and what factors influence completion? (2) 
What teacher adoption patterns emerge, and what workflow barriers affect full-class 
coverage? (3) What learning analytics can the platform generate to inform differentiated 
instruction?

Methods: A seven-week field deployment was conducted across 20 schools in Kajiado and 
Uasin Gishu Counties, Kenya, encompassing 33 classes, 1,041 assessed students, and 2,428 
teacher-created assessments yielding 4,926 completed student assessment results. Learners’ 
usability was assessed via duration distributions and completion rates; teacher adoption via 
weekly active counts and efficiency ratios; coverage via class-level completion metrics; and 
learning analytics via letter-level mastery rates and between-school variation.

Results: Median assessment duration was 45 seconds with 98.2% completion, indicating 
minimal learner-facing friction. Active schools grew from 6 to 20 by Week 3, and weekly 
assessments increased 160-fold from 9 to over 1,400 at peak, demonstrating rapid teacher 
adoption. Teacher efficiency improved significantly over time (ρ = 0.89, p = .007). For the 
Letter Identification strand, 42.4% of classes achieved full-student coverage. Letter-level 
mastery analysis revealed systematic difficulty patterns (Y, D, N, E < 70% mastery; V, O, S, 
X, Z ≥ 85%) and substantial between-school variation (range: 44.4%–97.4%, SD = 16.1%).

Conclusions: Offline-first mobile formative assessment can achieve high learner engagement 
and rapid teacher adoption while producing actionable learning analytics in low-resource 
settings. This study provides implementation evidence that offline-first mobile architecture 
paired with formative-assessment design can support classroom use and generate 
differentiated-instruction analytics at scale in LMIC contexts.

Keywords: formative assessment; mobile learning; early literacy; learning analytics; 
educational technology; Kenya; teacher adoption; differentiated instruction; offline-first 
architecture; LMIC
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1. Introduction

1.1 The Challenge of Foundational Literacy Assessment

Foundational literacy, the ability to recognize letters, decode sounds, and read simple words, 
is a critical gateway skill that predicts long-term academic success (Shanahan & Lonigan, 
2010; Gredler, 2002). More than half of all children in low- and middle-income countries do 
not learn to read with comprehension by age 10, despite the ambitions of Sustainable 
Development Goal 4 for inclusive and equitable quality education (World Bank, 2019; Jaime, 
2023). In sub-Saharan Africa, where learning poverty rates exceed 80% (World Bank, 2019), 
early identification of struggling readers is essential for timely intervention. Yet teachers in 
these contexts face significant barriers to implementing practical formative assessment: large 
class sizes, limited instructional time, inadequate training in data-driven instruction, and a 
lack of tools for efficient evaluation and analysis (Dubeck & Gove, 2015; Piper et al., 2018).

Traditional approaches to early literacy assessment, such as the Early Grade Reading 
Assessment (EGRA), provide valuable diagnostic information but are resource-intensive, 
typically requiring trained assessors and one-on-one administration (A. K. Gove & 
Wetterberg, 2011). The Uwezo's annual measures have documented the extent of the learning 
crisis across Kenya and East Africa (Uwezo, 2016). Teachers need assessment tools that 
integrate seamlessly into daily instruction, provide immediate feedback, and scale across 
entire classrooms without specialized training (Black & Wiliam, 1998; Stiggins, 2005). Given 
the scale of the learning poverty challenge, resources within each country need to be directed 
to the most cost-effective approaches possible (Jaime, 2023).

1.2 Theoretical Foundations: Integrating Pedagogy and Technology

The pedagogical foundations for mobile-assisted learning were established through early 
explorations into the use of portable devices for educational purposes (Valk et al., 2010; 
Motlik, 2008; Amoah et al., 2022). Concurrently, the principle of differentiated instruction 
gained prominence, proposing that tailoring teaching to students' individual learning profiles 
yields superior educational outcomes (Tomlinson, 2014). A meta-analysis affirmed that 
technology-supported personalized learning approaches in LMICs, particularly those that 
integrate diagnostic and formative assessment into the instructional flow improves learning 
outcomes significantly (Major et al., 2021). The Global Education Evidence Advisory Panel, 
has identified structured pedagogy with linked materials and targeted instruction as 'Good 
Buys', interventions with strong evidence of cost-effectiveness for improving learning in low- 
and middle-income countries (Jaime, 2023).

A parallel stream of research has focused on the technical implementation of offline-first 
systems (Ijtihadie et al., 2010; Renz et al., 2017). However, a significant gap exists in the 
holistic integration of pedagogy and technology, as prior work tends to focus on either 
pedagogical strategies or offline technical solutions separately (Rodriguez-Segura, 2022).
Despite promising evidence, two gaps persist. First, many studies evaluate pedagogical 
interventions without reporting system-level usability, adoption, and operational constraints 
under real classroom conditions. Second, technical studies of offline-first architectures often 
omit the instructional logic needed to support differentiated teaching decisions. This leaves 
limited evidence on whether integrated, offline-capable mobile formative assessment 
platforms can be adopted at scale while generating teacher-actionable analytics.

1.3 The Present Study
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To address these gaps, this study evaluates an offline-first, mobile formative assessment 
system, the Foundational Literacy Platform (FLP), deployed under typical school conditions 
and examines student usability, teacher workflow adoption, and learning analytics outputs. 
Three research questions guide this investigation: RQ1 (Learners Usability), how do early-
grade learners engage with mobile literacy assessments, and what factors influence 
assessment completion? This question is addressed by analyzing assessment duration 
distributions across competency levels and tracking weekly assessment completion rates to 
identify usability patterns and potential friction points. RQ2 (Teacher Adoption), what 
adoption patterns emerge among teachers implementing mobile assessment, and what 
workflow challenges affect assessment coverage of all learners in a classroom? This question 
is addressed by tracking weekly counts of active schools and classes, computing efficiency 
ratios (student assessment results per teacher assessment created), and calculating the 
proportion of classes achieving full student coverage along with the time and assessments 
required. RQ3 (Learning Analytics), What learning analytics can the FLP generate, and how 
do these inform differentiated instruction at the classroom and system levels? This question is 
addressed by computing letter-level mastery rates across all assessment events, and 
quantifying between-school variation using standard deviation.

2. Platform Design

2.1 Design Principles

The FLP was designed according to four principles informed by prior research on educational 
technology in developing contexts (Wagner, 2018; Warschauer & Ames, 2010) and offline-
first architecture (Ijtihadie et al., 2010; Renz et al., 2017). (1) Minimal training requirements, 
teachers should be able to create and administer assessments within their first session, 
without specialized training. (2) Classroom-friendly workflow, assessments should fit 
naturally into existing literacy instruction blocks, requiring no more than one minute per 
student. (3) Offline capability, core functionality should operate without continuous internet 
connectivity, synchronizing data when connections are available. (4) Immediate, actionable 
insights, results should be presented in formats that directly inform instructional decisions.

These principles directly map to the study's research questions. RQ1 examines learner 
completion time and completion rates, addressing classroom-fit and usability (Principles 1- 
2). RQ2 investigates teacher adoption trends and assessment coverage metrics, evaluating 
minimal-training feasibility and workflow efficiency (Principles 1, 3). RQ3 analyzes letter-
level and competency-level analytics to determine whether the system generates actionable 
instructional insight (Principle 4).

2.2 Technical Architecture

The FLP employs a modern, cloud-native architecture specifically designed to address the 
infrastructure constraints common in low and middle-income countries (Figure 1). The 
system comprises four integrated components: a cross-platform mobile application, a 
serverless cloud backend with Google Firebase Cloud Functions, AI services via Microsoft 
Foundry, and a web-based monitoring and management dashboard. Critically, the entire 
architecture is serverless, meaning operational costs scale with actual usage rather than 
requiring fixed infrastructure investments.
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Figure 1. FLP technical architecture. The system comprises four integrated components: a 
cross-platform mobile application, a serverless cloud backend with Firebase Cloud Functions, 
AI services via Microsoft Foundry, and a web-based monitoring and management dashboard 
built with Next.js. 

2.2.1 Mobile Application Layer

The mobile application was developed using React Native, a cross-platform framework that 
enables deployment across iOS, Android, web, and even Windows platforms from a single 
codebase. This architectural choice reduces development and maintenance costs while 
ensuring broad device compatibility, critical considerations for resource-constrained 
education systems where schools may possess heterogeneous device ecosystems. The 
application implements an offline-first design pattern: all core assessment functionality 
operates without network connectivity, with data stored locally on the device. When internet 
connectivity becomes available, the Firebase Storage SDK automatically queues and uploads 
assessment data to the cloud backend, ensuring no data loss even in environments with 
intermittent or unreliable network access. 

2.2.2 Serverless Cloud Backend

The cloud infrastructure utilizes Google Firebase Cloud Functions, implementing a fully 
serverless architecture. The backend integrates three core Firebase services: Cloud Functions 
for business logic execution, Firebase Storage for media files (including audio recordings of 
learner’s responses), and Firestore as the NoSQL database for storing assessment data, user 
profiles, and learning analytics. All business logic is centralized in cloud functions rather than 
distributed across client applications, improving product quality, security, and maintainability 
updates propagate instantly without requiring teachers to update their applications. 

The serverless model operates on a pay-per-use pricing structure, where compute resources 
are consumed only when assessments are being processed, rather than requiring continuously 
running servers. This dramatically reduces operational costs compared to traditional server-
based architectures, making the platform economically sustainable for education systems 
with limited technology budgets. During periods of low activity (nights, weekends, school 
holidays), infrastructure costs approach zero, while the system automatically scales to handle 
peak loads during active assessment periods.

2.2.3 AI-Powered Response Processing
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Learners’ responses are processed using Microsoft Foundry AI services, which like the rest of 
the architecture operates on a serverless model. The platform supports two primary AI 
operations. (1) Speech-to-text transcription for verbal letter and sound responses, and optical 
character recognition (OCR) for written letter formation or tracing assessments. These AI 
capabilities enable automated scoring of student responses without requiring teachers to 
manually evaluate each response, reducing assessment friction and enabling immediate 
feedback. The AI inference requests are routed through the cloud functions backend, 
minimizing mobile device computational requirements and ensuring consistent accuracy 
across different device types. This design also enables continuous improvement of 
recognition accuracy through model updates without requiring client-side changes.

2.2.4 Monitoring and Management Dashboard

A web-based monitoring and management dashboard, built using Next.js, provides teachers 
and education administrators with comprehensive visibility into the education system. The 
dashboard supports school, class, teacher, and learner management functions, enabling 
administrators to monitor teacher and learner engagement across the deployment. For 
instructional purposes, the dashboard displays: (a) class-level competency distributions 
showing the proportion of students at each level (BE, AE, ME, EE); (b) letter-level mastery 
heatmaps identifying which specific letters students have mastered versus those requiring 
additional instruction; (c) individual student learning profiles tracking performance 
trajectories over time; and (d) actionable instructional recommendations suggesting which 
students need reinforcement, which are ready for advancement, and which specific letters 
require additional classroom focus.

2.3 Pedagogical Framework and Curriculum Alignment

The FLP's pedagogical design aligns directly with Kenya's Pre-Primary 1 (PP1) and Pre-
Primary 2 (PP2) literacy curriculum, ensuring that assessments measure skills teachers are 
expected to develop. This section describes how assessment content, competency 
classifications, and instructional recommendations are structured to support differentiated 
teaching.

2.3.1 Literacy Strands and Assessment Structure

Assessments are organized around curriculum-aligned literacy strands specified in the 
Kenyan PP1/PP2 curriculum: letter identification (reciting letters A-Z), letter naming and 
letter-sound correspondence (matching letter names and letter sounds with letters), phonemic 
awareness (letter-sound knowledge in uppercase and lowercase letters, in PP1), and for PP2, 
blending three-letter words and familiar word reading.

Learner’s complete brief, game-like tasks, typically viewing a letter and providing a verbal or 
touch-based response, with the platform automatically recording responses and calculating 
accuracy using proprietary AI models fine-tuned on local dataset. Each assessment typically 
contains multiple letters across several attempts and requires a few minutes to complete, 
fitting naturally into existing literacy instruction blocks.

2.3.2 Competency-Based Assessment Rubrics

Assessment results are categorized using a two-stage competency algorithm aligned with 
curriculum expectations. In the first stage, the platform evaluates mastery at the letter level, a 
letter is classified as 'mastered' if the learners correctly responded on at least 70% of attempts 
for that letter within the assessment. In the second stage, the proportion of mastered letters 
determines the overall competency level. Exceeding Expectations (EE): 100% of assessed 
letters mastered and assessment completed in under 3 minutes, demonstrating both accuracy 
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and fluency. Meeting Expectations (ME): At least 80% of assessed letters mastered, showing 
solid understanding with minor gaps. Approaching Expectations (AE): At least 50% but less 
than 80% of assessed letters mastered, indicating partial understanding. Below Expectations 
(BE): Less than 50% of assessed letters mastered, requiring intensive support. 

2.3.3 Differentiated Instructional Activities

The platform provides teachers with competency-matched instructional recommendations 
drawn from a curated activity bank. Activities are mapped to specific competency levels and 
designed to use minimal or locally available materials, recognizing resource constraints in 
participating schools. Examples include, 'Letter Hunt Wall' (i.e., for BE/AE), display letter 
cards on the board, say a letter aloud, and have students find and point to it, strengthening 
letter recognition and retrieval. 'Letter Bingo', provide cards with random letters, call out 
letters one at a time, and students cover matching letters, building letter-name awareness 
through gaming. For AE/ME students, 'Swat the Letter', place letter cards on a table, call out 
a letter, and students race to swat it with a pointer, building reflexive letter-name 
associations. 'Letter Shape Posters', draw large letter shapes and discuss their visual features 
(curves, straight lines), asking guiding questions like 'Do you see any straight lines in this 
letter?' to build visualization skills. For ME/EE students, 'Match the Letters', lay out 
uppercase and lowercase letter cards in a jumble, and students match corresponding pairs (A 
with a), building visual discrimination. 'Find the Letter in Words', display short CVC or 
familiar words and ask students to identify target letters within words, supporting early 
decoding skills.

2.3.4 Teacher Dashboard Integration

The platform translates raw assessment data into actionable instructional guidance through 
the teacher dashboard (Figure 2C). For each competency group, the dashboard displays (1) 
the specific letters or sounds that students in that group are struggling with (color-coded red 
for struggling) and (2) the recommended instructional activities matched to the group's 
competency level. The dashboard also displays learner’s names within each group to 
facilitate targeted small-group instruction. This design embodies the principle of 'actionable 
intelligence', presenting analytics in formats that directly inform instructional decisions rather 
than requiring teachers to interpret raw data (Wise & Shaffer, 2015).
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Figure 2. Curriculum-aligned formative assessments for differentiated instruction. The 
panel on the left shows the screen for creating new assessments. The middle panels show the 
learners assessment interaction for the letter identification strand. Here the learners are given 
audio prompts and respond by tapping on letters on the screen. The right most panel is the 
class strand detail screen, which provides teachers with information that directly supports 
differentiated instruction. Learners are grouped according to their competency levels, and the 
teachers are provided with recommended instructions and letters to focus on to support each 
group. 

3. Methods

3.1 Participants and Setting

The study was conducted in Kajiado and Uasin Gishu Counties, Kenya, representing 
both peri-urban and rural contexts. Over the seven-week study period (September-October 
2025), the FLP was deployed across 20 schools comprising 33 classes and 1,041 assessed 
students. Teachers received an initial in-person orientation session, with ongoing support 
provided through a WhatsApp group. 

3.2 Data Collection

Data were collected automatically through the FLP's integrated logging system. The offline-
first architecture enabled continuous data capture regardless of network availability: 
assessment data were stored locally on the device during administration and automatically 
synchronized to the cloud backend (Firestore database) when internet connectivity became 
available. 
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Three categories of data were captured: (1) Assessment metadata including timestamp, 
duration, student identifier, class, school, literacy strand, specific letters assessed, and 
completion status; (2) Response data comprising each item's target response (expected 
letter/sound), student response (captured via speech-to-text or touch input), response 
accuracy, and response time; and (3) Usage logs tracking teacher actions including 
assessment creation and student assignment. Learner’s identifiers were anonymized and no 
personally identifiable information was retained in the research dataset. 

3.3 Statistica Analysis

Key measures used in the analysis are defined in Table 1. Analyses were conducted 
using Python (pandas, scipy, numpy). For each research question, appropriate statistical tests 
were selected based on data characteristics and assumptions. 

RQ1 (Learners Usability): Assessment duration distributions were examined using 
descriptive statistics (median, percentiles). Durations were compared across competency 
levels using one-way ANOVA with Tukey HSD post-hoc tests. Levene's test assessed 
homogeneity of variances; ANOVA is robust to this violation with large sample sizes (Blanca 
Mena et al., 2017). Effect sizes were computed using eta-squared and Cohen's d. Completion 
rate trends across weeks were analyzed using Spearman correlation. 

RQ2 (Teacher Adoption): Adoption growth trends were assessed using Spearman correlation. 
Teacher efficiency (ratio of student results to assessments created) trends were similarly 
analyzed using Spearman correlation. Coverage achievement rates for the Letter 
Identification strand were tested against a 50% benchmark using binomial tests. 

RQ3 (Learning Analytics): Letter-level mastery patterns were analyzed using descriptive 
statistics, with letters categorized by difficulty thresholds (≥85% easy, 75–84% medium, 70–
74% hard, <70% very hard). School-level letter mastery rates were computed using the same 
methodology to examine between-school variation. All tests used α = .05 for significance.

Table 1. Definition of measures used in the analysis

Measure Definition Research 
Question

Assessment 
Duration

Time in seconds from assessment start to completion RQ1

Completion Rate Proportion of initiated assessments that were completed, 
calculated weekly

RQ1

Competency 
Level

Learners’ performance category: Beginning Expectations 
(BE), Approaching Expectations (AE), Meeting Expectations 
(ME), or Exceeding Expectations (EE)

RQ1

Active Schools Number of schools with at least one assessment in a given 
week

RQ2

Active Classes Number of classes with at least one assessment in a given 
week

RQ2

Assessment 
Volume

Number of learners assessment results per week RQ2

Efficiency Ratio Learners assessment results divided by assessments created; 
higher values indicate more students assessed per teacher 
action

RQ2

Full Coverage Achievement of 100% learners’ assessment within a class for 
the Letter Identification strand

RQ2



Page 9 of 22

Measure Definition Research 
Question

Letter Mastery 
Rate

Proportion of letters covered that were mastered (≥70% 
accuracy on that letter)

RQ3

School-Level 
Letter Mastery

Letter mastery rate aggregated by school using the same 
methodology

RQ3

4. Results

4.1 Descriptive Overview

Over the seven-week study period, teachers created 2,428 assessments administered to 1,041 
students, yielding 5,048 student assessment results (Table 2).

Table 2. Summary statistics for the seven-week pilot study.
Metric Value
Schools 20
Classes 33
Assessed students 1,041
Assessments created 2,428
Student assessment results 5,048
Completed assessments 4,957 (98.2%)
Median assessment duration 45 seconds
Mean letter mastery rate 78.2%

4.2 RQ1: Learners Usability and Engagement

4.2.1 Assessment Duration and Completion Rate Trends

The distribution of assessment durations was strongly right skewed, with a median of 
45 seconds and 90th percentile of 2.1 minutes. Most assessments (88.7%) were completed in 
under two minutes (Figure 3A), indicating that the brief, game-like format was manageable 
for early-grade learners. Assessment duration varied significantly by competency level 
(Figure 3B). A one-way ANOVA revealed significant differences among groups, F (3, 4922) 
= 108.4, p < .001, η² = 0.062. Levene's test indicated unequal variances (p < .001); however, 
ANOVA is robust to this violation with large sample sizes (Blanca Mena et al., 2017). Post-
hoc Tukey HSD tests revealed that all competency levels differed significantly from each 
other (all p < .001), with Meeting Expectations (ME) students showing the longest durations. 
The ME vs. Exceeding Expectations (EE) comparison yielded the largest effect (d = 0.80, 
medium effect).

Weekly completion rates improved dramatically after Week 1. Week 1 showed a completion 
rate of 33.3%, while Weeks 2–7 averaged 98.1% (range: 95.6%–99.7%) (Figure 3C). 
Spearman correlation confirmed a strong positive trend over time (ρ = 0.93, p = .003), 
suggesting that minimal orientation was sufficient for successful platform use.
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Figure 3. Learners Usability Metrics. (A) Distribution of assessment durations with median 
(45 seconds) and 90th percentile (125 seconds) indicated by dashed lines. Outliers removed 
using IQR method for visualization; n = 4,926 completed assessments. (B) Assessment 
duration by competency level. Box plots show median (black line), interquartile range (box), 
and whiskers (1.5 × IQR). Letters indicate Tukey HSD groupings; levels not sharing a letter 
differ significantly (p < .05). ANOVA statistics and Cohen's d for the largest pairwise 
comparison (ME vs. EE) shown. (C) Weekly completion rates across the seven-week pilot. 
Week 1 completion (33.3%) reflects initial orientation period; Weeks 2–7 averaged 98.1%. 
Spearman correlation indicates significant positive trend.

4.3 RQ2: Teacher Adoption and Workflow

4.3.1 Adoption Growth

Active schools increased from 6 in Week 1 to 20 by Week 3, remaining stable through 
Week 7. Active classes grew from 12 to 33 over the same period (Figure 3). Weekly student 
assessment volume increased dramatically from 9 assessments in Week 1 to 1,436 at peak 
(Week 5), representing a 160-fold increase. Spearman correlation confirmed a significant 
positive trend in assessment volume over Weeks 1–5 (ρ = 1.00, p < .001), before declining 
slightly in Weeks 6–7 as some schools began vacation periods.

Figure 4. Weekly Platform Adoption Growth. Active schools (circles) and active classes 
(squares) shown on left axis; student assessment volume (gray) shown on right axis. Schools 
increased from 6 to 20 and classes from 12 to 33 over the first three weeks, then remained 
stable. Assessment volume grew from 9 in Week 1 to 1,436 at peak (Week 5), a 160-fold 



Page 11 of 22

increase. Spearman correlation calculated for Weeks 1–5 only; Weeks 6–7 showed reduced 
activity as some schools began vacation periods.

4.3.2 Efficiency Metrics

Teacher efficiency, measured as the ratio of student results to assessments created, 
improved progressively throughout the pilot (Figure 5). Efficiency increased from 0.25 in 
Week 1 to a peak of 4.53 in Week 6, before declining slightly in Week 7 as some schools 
began vacation periods. Spearman correlation confirmed a significant positive trend (ρ = 
0.89, p = .007). The mean efficiency for Weeks 2–7 was 2.41, indicating teachers assessed 
approximately 2–3 students per assessment created, demonstrating effective adoption of the 
batch assessment workflow.

Figure 5. Teacher Efficiency Trend Over Time. Efficiency ratio calculated as student 
assessment results divided by assessments created. Efficiency increased progressively from 
0.25 in Week 1 to a peak of 4.53 in Week 6, before declining slightly in Week 7 as some 
schools began vacation periods (Weeks 2–7 mean = 2.41). Spearman correlation confirms a 
significant positive trend (ρ = 0.89, p = .007), indicating teachers became increasingly 
proficient at batch-assessing students over time.

4.3.3 Coverage Metrics

Coverage metrics examined teachers' ability to assess all enrolled students for a class 
strand (e.g., Letter Identification). For the Letter Identification strand of the 33 classes, 14 
(42.4%) achieved full coverage during the seven-week pilot (Figure 6). This rate did not 
differ significantly from 50% (binomial test, p = .243), indicating that a substantial 
proportion of teachers successfully assessed their entire class within the study period. Among 
classes achieving full coverage, the median time was 2.5 weeks, and the median number of 
assessments required was 14 (range: 2–99). The wide range reflects variation in class sizes 
and assessment strategies, with some teachers achieving coverage efficiently through 2–3 
batch assessments while others used more inefficient iterative approaches.
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Figure 6. Class Coverage Analysis for Letter Identification. (A) Proportion of classes 
achieving full coverage (100% of enrolled students assessed) during the seven-week pilot. Of 
33 classes, 14 (42.4%) achieved full coverage. (B) Distribution of time to achieve full 
coverage among successful classes (median = 2.5 weeks). (C) Distribution of assessments 
required to achieve full coverage (median = 14 assessments; range: 2–99). Dashed lines 
indicate medians.

4.4 RQ3: Learning Analytics

4.4.1 Letter-Level Mastery Patterns and Between-School Variation

The FLP generated detailed letter-level analytics revealing substantial variation in 
mastery rates (Figure 7A). Mean letter mastery was 78.2%, ranging from 50.0% (letter Y) to 
100.0% (letters X and Z). Letters were categorized by difficulty: 5 letters were classified as 
easy (≥85% mastery), 11 as medium (75–84%), 6 as hard (70–74%), and 4 as very hard 
(<70%). The hardest letters were Y, D, N, and E, while the easiest included V, O, S, X, and 
Z. School-level letter mastery rates revealed substantial between-school variation (Figure 
7B), ranging from 44.4% to 97.4% (M = 75.7%, SD = 16.1%). Seven schools achieved easy-
level mastery (≥85%), 5 were classified as medium (75–84%), 1 as hard (70–74%), and 7 as 
very hard (<70%). This granular data enables targeted interventions at both letter and school 
levels, allowing education administrators to identify schools requiring additional support.
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Figure 7. Letter-Level Mastery Patterns and School Variation. (A) Overall mastery rates 
for each letter, sorted from lowest to highest. A letter was considered mastered if the student 
achieved ≥70% accuracy on that letter. Bar colors indicate difficulty categories: green (≥85%, 
easy), yellow-orange (75–84%, medium), dark orange (70–74%, hard), and red (<70%, very 
hard). Dashed line indicates overall mean (78.2%). (B) School-level letter mastery rates using 
the same methodology, with schools anonymized and sorted from lowest to highest. Schools 
show substantial variation (range: 44.4%–97.4%), colored using the same difficulty 
thresholds.
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5. Discussion

5.1 Student Engagement with Mobile Assessment

The findings provide strong evidence that mobile-based literacy assessments can achieve 
high engagement among early-grade learners in low-resource contexts. The 45-second 
median completion time compares favorably to traditional individual reading assessments 
such as EGRA, which require approximately 15 minutes per learner (A. Gove et al., 2023). 
The dramatic improvement in completion rates from Week 1 (33.3%) to subsequent weeks 
(98.1%), supported by a strong Spearman correlation (ρ = 0.93, p = .003), suggests that 
minimal orientation is sufficient for successful platform use. The game-like format, brief 
duration, and simple interaction patterns appear well-suited to the attention spans and 
technical familiarity of 4–6-year-old learners.

The statistically significant relationship between competency level and assessment duration 
(F(3, 4922) = 108.4, p < .001, η² = 0.062) offers insights into developing literacy skills. 
While the overall effect size was small, the ME-EE comparison yielded a medium effect (d = 
0.80), indicating practical significance for this key distinction. Meeting Expectations (ME) 
learners took significantly longer than both lower-performing (BE, AE) and higher-
performing (EE) students, suggesting that partially skilled learners experience greater 
cognitive processing demands than either low or high performers during assessments 
(Anderson, 1982; Sweller, 1988).

5.2 Teacher Adoption: Successes and Challenges

The rapid scaling of FLP adoption, from 6 to 20 schools and from 9 to over 1,400 weekly 
assessments within five weeks, demonstrates that teachers in low-resource contexts can 
quickly integrate mobile assessment tools into classroom practice. The perfect monotonic 
relationship in assessment volume growth (ρ = 1.00, p < .001 for Weeks 1–5) and the 
significant improvement in efficiency ratios over time (ρ = 0.89, p = .007) challenge 
assumptions that technology adoption in developing countries necessarily requires extended 
training (Warschauer & Ames, 2010). Teacher efficiency increased progressively from 0.25 
students per assessment in Week 1 to a peak of 4.53 in Week 6, with a mean of 2.41 for 
Weeks 2–7, indicating teachers became increasingly proficient at batch-assessing learners. 

However, the finding that only 42.4% of classes achieved full learner coverage for Letter 
Identification reveals workflow challenges that warrant attention. While this rate did not 
differ significantly from 50% (binomial test, p = .243), suggesting reasonable adoption, the 
wide range in assessments required (2–99, median = 14) indicates substantial variation in 
teacher assessment strategies. Some teachers achieved coverage efficiently through a few 
batch assessments, while others used more iterative approaches requiring many more 
assessment sessions. This finding indicates that workflow design and teacher guidance, rather 
than platform capability alone, determine coverage success.

5.3 Learning Analytics: Actionable Insights at Letter and School Levels

The FLP's learning analytics capabilities demonstrate the potential for mobile assessment 
platforms to generate instructionally relevant data at multiple levels of granularity. At the 
letter level, mastery rates ranged from 50.0% (letter Y) to 100.0% (letters X and Z), with a 
mean of 78.2%. The identification of specific difficult letters, Y, D, N, and E, all below 70% 
mastery, provides teachers with concrete targets for instructional focus. 
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Between-school variation was substantial, with school-level letter mastery rates ranging from 
44.4% to 97.4% (M = 75.7%, SD = 16.1%). Seven schools achieved mastery rates above 
85%, while seven schools fell below 70%. This variation, nearly 53 percentage points 
between the highest and lowest performing schools, underscores the importance of school-
level monitoring and targeted support. Education administrators can use such data to identify 
schools requiring intervention and to investigate factors contributing to high performance at 
successful schools.

The granularity of these analytics distinguishes the FLP from traditional assessment 
approaches. Rather than providing aggregate scores that obscure specific learning gaps, the 
platform identifies precisely which letters each student has and has not mastered, enabling the 
differentiated instruction emphasized in the pedagogical framework. This aligns with 
research demonstrating that actionable, specific feedback is more likely to influence teacher 
practice than general performance summaries (Wise & Shaffer, 2015).

5.4 Bridging the Pedagogy-Technology Gap

This study contributes to addressing a significant gap in the literature: the holistic integration 
of pedagogy and technology for early literacy in LMICs. Prior research has tended to focus 
on either pedagogical strategies or offline technical solutions separately (Rodriguez-Segura, 
2022). This study provides implementation evidence that an offline-first architecture can be 
paired with formative-assessment design to support classroom use while generating 
differentiated-instruction analytics at scale in LMIC contexts.

The pedagogical framework, with its curriculum-aligned competency rubrics and 
differentiated instructional activities, translated raw assessment data into actionable teaching 
guidance. Rather than presenting teachers with abstract percentages, the platform identified 
specific students and specific letters requiring attention, along with recommended activities 
matched to each competency level. This embodied the principle of "actionable intelligence" 
that educational technology research has identified as critical for teacher adoption (Wise & 
Shaffer, 2015).

5.5 The Platform as a Foundation for AI-Powered Foundational Literacy Platform

The present study demonstrates that the FLP can serve as a foundation for a more 
comprehensive AI-powered foundational literacy platform. The demonstrated capabilities, 
high student engagement, rapid teacher adoption, and actionable learning analytics, represent 
the essential data infrastructure required for adaptive, personalized learning systems. The 
letter-level mastery data, competency progression tracking, and between-school variation 
analytics provide the granular information necessary for AI-driven instructional 
recommendations and targeted intervention strategies.

These findings align with the Global Education Evidence Advisory Panel's identification of 
adaptive software that targets learning to the level of an individual child as a promising 
approach for improving learning outcomes (Jaime, 2023). The FLP's ability to generate real-
time, item-level performance data positions it as the assessment backbone for such adaptive 
systems, enabling the kind of "teaching at the right level" that has been shown to dramatically 
improve learning outcomes in similar contexts (Banerjee et al., 2016; Muralidharan et al., 
2019)

5.6 Future Directions: Toward a Unified AI-Powered Foundational Literacy and 
Numeracy Platform
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Building on the evidence from this study, future development will integrate foundational 
numeracy assessment and instruction into the platform, creating a unified, low-cost, offline-
first, AI-powered Foundational Literacy and Numeracy (AI-FLN) platform. Research on 
essential ingredients to literacy and numeracy improvement has demonstrated that similar 
instructional principles, structured pedagogy, formative assessment, and differentiated 
instruction, apply across both domains (Piper et al., 2018). 

The potential impact of such platforms is substantial. Piper and colleagues showed that for 
every US$100 spent on programs combining professional development, coaching, books, and 
teachers' guides, an additional 14.7 learners were able to read at benchmark in English. A 
low-cost, technology-enabled platform that embeds these evidence-based ingredients could 
further improve cost-effectiveness by reducing per-learners costs while maintaining 
instructional quality.

Such a unified AI-FLN platform has significant potential beyond the Kenyan context. 
Foundational skills such as letter identification, letter naming, letter-sound correspondence, 
and basic number sense are universal developmental milestones that every child must acquire 
regardless of geographic or cultural context. The learning poverty crisis, with more than half 
of children in low- and middle-income countries unable to read with comprehension by age 
10 (World Bank, 2019), is particularly acute in sub-Saharan Africa, where learning outcomes 
have remained low despite increased school enrollment. A low-cost, offline-first platform 
that generates actionable learning analytics could provide education systems across low- and 
middle-income countries with data-driven tools to identify struggling learners early and target 
instruction appropriately.

The platform's offline-first architecture and serverless cost model are particularly relevant for 
infrastructure-constrained environments common in sub-Saharan Africa and other developing 
regions. Technology interventions that do not account for implementation context often fail 
to deliver promised benefits (Jaime, 2023). By designing for intermittent connectivity and 
pay-per-use pricing from the outset, the AI-FLN ensures that core functionality remains 
available regardless of network conditions while keeping operational costs sustainable for 
education systems with limited technology budgets.

5.7 Limitations

Several limitations should be noted. First, this was an observational implementation study 
rather than a randomized controlled trial; thus, causal claims about learning gains cannot be 
made. Second, the seven-week duration may not capture longer-term sustainability or 
seasonal variations in platform use. Third, the study relied entirely on FLP-generated data; 
qualitative insights from teacher interviews or classroom observations were not included in 
the analysis. Fourth, the study focused primarily on Letter Identification, the strand with the 
most complete data, limiting generalizability to other literacy strands.

6. Conclusions

This study examined the implementation of an offline-first, mobile formative assessment 
platform for early literacy across 20 Kenyan primary schools. Three key findings emerged, 
each addressing a specific research question:

First, addressing RQ1 (Student Usability), mobile literacy assessments achieved remarkably 
high student engagement, with a 45-second median completion time and 98.2% completion 
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rate, demonstrating that brief, game-like digital assessments are well-suited to early-grade 
learners in low-resource contexts.

Second, addressing RQ2 (Teacher Adoption), teacher adoption scaled rapidly, with weekly 
assessment volume increasing 160-fold within five weeks and teacher efficiency improving 
significantly over time (ρ = 0.89, p = .007). However, only 42.4% of classes achieved full 
student coverage for Letter Identification, indicating that teacher workflow optimization 
remains an area for improvement.

Third, addressing RQ3 (Learning Analytics), the FLP generated granular learning analytics 
with direct instructional relevance, including letter-level difficulty rankings (Y, D, N, E < 
70%; V, O, S, X, Z ≥ 85%) and substantial between-school variation (M = 75.7%, SD = 
16.1%, range: 44.4%–97.4%) that enables targeted intervention at both letter and school 
levels.

The FLP's technical architecture, featuring offline-first mobile design, serverless cloud 
infrastructure with pay-per-use pricing, and AI-powered response processing, proved well-
suited to the infrastructure and budget constraints of LMIC education systems. The 
pedagogical framework, with curriculum-aligned competency rubrics and differentiated 
instructional recommendations, translated raw data into actionable teaching guidance.

Together, these findings demonstrate that offline-first mobile formative assessment platforms 
can serve as effective tools for data-driven literacy instruction in developing contexts, 
provided attention is paid to optimizing teacher workflows and translating analytics into 
actionable instructional guidance. The platform and the insights it generate establish a 
foundation for AI-powered foundational literacy and numeracy (AI-FLN) tools that can help 
address the learning poverty crisis affecting millions of children in sub-Saharan Africa and 
other low- and middle-income regions. Future randomized controlled trials should test 
whether these implementation successes translate to superior literacy and numeracy outcomes 
and examine the platform's effectiveness across diverse national contexts.
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